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The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular,
random matrix theory �RMT� concepts have proven to be useful. In discussing transition from regular behavior
to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the
present paper we analyze the regular to chaotic behavior of small world �SW� networks using an extension of
the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble
�DGOE�, supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a
certain range of eigenvalue correlations depending upon the strength of random connections. We show that for
these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE
statistics models the correlations very well. The analysis performed in this paper proves the utility of the
DGOE in network physics, as much as it has been useful in other physical systems.
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I. INTRODUCTION

Initiated by two seminal works �1,2�, the last decade has
witnessed a spurt in activities of network research �1,3,4�.
Regular and random networks are the two limiting cases of
network topology. For the regular network, each node is con-
nected in a fixed pattern to the same number of neighboring
nodes; on the other hand, for the random network, each node
is randomly joined with any other node. Real-world net-
works show the properties which are intermediate of the
regular and the random one �1,3,4�. For example, many real-
world networks from diverse field have very small diameter
but have very high clustering, two characteristics shown, re-
spectively, by random and regular networks. To model ran-
domness and regularity, Watts and Strogatz proposed an al-
gorithm to generate popularly known as small-world �SW�
network, which has the properties of small diameter and high
clustering �1�. Moreover, this model network is very sparse,
i.e., network with a very few number of edges, which is
another property shown by real-world networks.

The structure of networks is described by its associated
adjacency matrix A. It is defined in the following way: Aij
=1 if i and j nodes are connected and zero otherwise. We
consider only undirected networks. In this case, the adja-
cency matrix is symmetric and consequently has real eigen-
values. These eigenvalues give information about some basic
topological properties of the underlying network �5�. The
fluctuations of these eigenvalues can be studied by random
matrix theory �RMT�.

There is a long history of applications of random matrix
ensembles to model fluctuations of the spectra of diverse
systems �6�. Unfortunately analytical results exist only if
some ideal conditions are fulfilled by the systems studied.

On the other hand real physical systems usually depart from
these conditions. In order to cover these situations other en-
sembles have been introduced �7�. One such class of en-
semble is the so-called deformed Gaussian-orthogonal en-
semble �DGOE� �8–10�. This ensemble has been proved to
be particularly useful when one wants to study the breaking
of a discrete symmetry in a many-body system such as the
atomic nucleus. It is also useful for studying transition
among classes of ensemble such as order-chaos �Poisson
→GOE� and symmetry violation �2GOE→GOE� �11�. Re-
cently, Jalan and Bandyopadhyay show that spectra of vari-
ous model networks and real-world networks follow univer-
sal random matrix properties �12,13�, intermediate between
Poisson and GOE statistics. Correlations among eigenvalues
of SW networks follow GOE statistics of RMT for certain
range and after that they deviate from the GOE statistics
�14�. We believe that the DGOE supplies a RMT basis for the
Brody �15� distribution and gives a more accurate descrip-
tion of the GOE-Poisson transition than the Berry-Robnik
�16� model, which purports to justify the Brody formula
from an RMT stand point. The Brody distribution was used
previously in SW statistics investigation �12,13�. In the
present paper we analyze the spectra of SW model networks
using DGOE. Based on the results of Ref. �14� we argue, and
show through numerical simulations that fluctuations of the
spectra of the SW model follows the description of a transi-
tion Poisson-GOE.

II. SMALL-WORLD NETWORKS

Watts-Strogatz model of SW network is constructed by
rewiring the edges of regular ring lattice with probability p.
This rewiring procedure generates a network with some ran-
dom connections, without altering the number of vertices or
edges. For p=0, structure of the regular lattice or
k-nearest-neighbor coupled network remains same; on the
other hand, for p=1, the regular lattice becomes random net-
work. For the intermediate values of p, the graph is a SW
network: highly clustered like a regular graph, yet with small
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characteristic path length like a random graph. This onset of
SW property happens for a very small value of parameter p.
Characteristic path length is defined as the number of con-
nections in the shortest path between two nodes, averaged
over all pairs of nodes. For a network of size N and average
degree k, it scales as N /k if network is regular, and
log�N� / log�k� if network is random. Clustering coefficient
�C� is defined as the ratio of connections between neighbors
to the number of allowed links. For regular graphs C is very
high �3/4�, whereas for random graphs it scales as k /N.
Small-world networks show intermediate behavior between
these two extremes, with average path length being as low as
for the random graphs, and clustering coefficient as high as
that of regular graphs. This intermediate statistical features
of SW networks are reflected in their spectral fluctuations,
and can be nicely described using the DGOE which provides
a RMT basis for the deviation from the GOE behavior of the
short-range correlation aspect of the eigenvalues, exempli-
fied through the spacing distribution, and the long-range cor-
relation measured by the �3. In the following we supply a
description of the GOE-Poisson transition within the DGOE.

III. DEFORMED GAUSSIAN ORTHOGONAL ENSEMBLE
(DGOE): TRANSITIONS AMONG UNIVERSALITY

CLASSES IN RMT

The joint probability distribution of elements of DGOE
has the general form �9�,

P�H,�,�� = ZN
−1 exp�− �TrH2 − �TrH1

2� , �1�

where ZN is a normalization factor and TrH is the trace of the
matrix H. In order to describe two interpolating ensemble the
matrix H must be chosen as the sum of two terms,

H = H0 + H1, �2�

where the matrices H0 and H1 define complementary sub-
spaces of H. According to �1� for �→� the elements of H1
vanish and H is projected onto the matrix H0. Since in this
work we are concerned with the statistics intermediate be-
tween Poisson and GOE we will define H0 as the Poissonian
ensemble. It will be a diagonal matrix with elements given
by H0,j =E0,i�ij whose eigenvalues E0,i are independent ran-
dom variable with Gaussian distribution

�0�E� = ��

�
�1/2

e−�E2
�3�

and variance

�H0ij
2 � =

�ij

2�
. �4�

The elements of the diagonal-less matrix H1 are also random
independent variables with zero mean and variance given by

�H1ij
2 � =

1 + �ij

4�� + ��
= �21 + �ij

4�
, �5�

where �= �1+� /��−1/2. When �=0 ��=1� the ensemble cor-
responds to the GOE. In the limit �→� ��=0�, there will be

only diagonal elements and the Poisson regime is attained.
The average level density

���E� =
2

��
��

N
�1/2	

0

� dx

x
e−x2/4�2NJ1�x�cos�
�

N

Ex

�
�

�6�

and the cumulative level density

x��E� =
2

�
	

0

� dx

x2 e−x2/4�2NJ1�x�sin�
�

N

Ex

�
� , �7�

were calculated by Bertuola et al. �17�, who observed that
formula �7� provides a more accurate manner of unfolding
the spectra than the usual polynomial unfolding used in �18�.
These formulas work very well in the regime close either to
Poisson or GOE statistics. Intermediate between these statis-
tics there is a transition regime characterized by a rapid
change in statistics from almost Poisson to almost GOE. In
this regime formulas �6� and �7� need corrections �see �19��.

IV. SIMULATIONS AND RESULTS

Numerical simulations of the SW networks are made by
considering ensembles of 20 networks of size N=2000 and
average degree k=20. The adjacency matrix was diagonal-
ized numerically and its first and last 300 eigenvalues were
discarded. Since an analytical expression for the average
density is still lacking, the unfolding of eigenvalues was
made by fitting the cumulative density or stair-case function,

N�E� = �
i=1

N

	�E − Ei� , �8�

to Chebyshev polynomial using the linear least-squares
method. Ei is the eigenvalues of the SW network and 	 is
the unit step function.

For p=0, the corresponding adjacency matrix would be a
banded matrix with entries one in the band. As some connec-
tions are randomized with probability p, corresponding adja-
cency matrix gets some nonzero entries outside the band, at
the expense of equal numbers of entries of one in the band.
The mean value of the elements of these matrices is p and
variance is p�1− p�. Figures 1–6 plot the adjacency matrix
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FIG. 1. Left subfigure plots adjacency matrix, and right subfig-
ure plots the spectral rigidity as a function of L for the adjacency
matrix of SW model with p=0.002 �circle� and the DGOE with �
=0.0065 �full line�. �3 statistics for SW is plotted for 20 sets of
random realizations of rewiring.
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for different rewiring probabilities. Left subfigure of Fig. 1
plots the adjacency matrix at the onset of SW transition �p
�0.002�. For such a small value of p, very few connections
are rewired and hence adjacency matrix is still almost
banded with very few connections outside the band. Note
that we take average degree of network as k=20, which leads
to a sparse network �i.e., the number of connections is of the
order of the number of nodes�. Left subfigure of Fig. 6 plots
the adjacency matrix for p=0.2, for this value of p, 20% of
connections are rewired leading to the equal number of one
outside the band.

Results for the statistics intermediate between Poisson
and GOE are obtained by diagonalization of an ensemble of
random matrices. The mean value of the elements of these
matrices was taken zero and the variance of the diagonal and
off-diagonal elements given by Eqs. �4� and �5�. The unfold-
ing of the spectra of the matrices is done using Eq. �7�. In the
simulations the values of �=1 and the size of matrices N
=2000 are kept fixed. In order to simulate a transition
Poisson-GOE, ensembles with 100 matrices and different
values of � are considered. For each value of � we check
between the density of eigenvalue given by Eq. �6� and the
density of eigenvalues from the numerical calculation. If the
agreement between the two is poor, the simulations are rerun
using a corrected version of �, and � �called � and A in �17��
�19�. These corrections are needed especially in the transi-
tional regime alluded to following the discussion below Eq.
�7�.

In the discussion of the deviation of the spacing distribu-
tion from that of Wigner, SW practitioners have used the
Brody distribution �15�, which is given by

P��s� = As� exp�− Bs�+1� , �9�

where A and B are related to � through the normalization
condition. Another distribution which also purports to de-
scribe the transition case was derived by �16� using RMT and

semiclassical considerations. The DGOE, which we use in
this paper, supplies a natural RMT for the description of the
GOE-Poisson and/or the Poisson-GOE transitions.

In order to investigate the long-range behavior among the
eigenvalues of SW model we use the Dyson-Mehta statistics
�3. It is defined as

�3�L;a� =
1

L
min
B1,B2

	
0

a+L

dE�x�E� − B1E − B2�2, �10�

where B1 and B2 are obtained from a least-square fit. L is the
average number of spacings in the integration interval, and
x�E� the number of eigenvalues which are less than E �for
DGOE x�E� is given by Eq. �7��. �3 measures the least-
square deviation of the function x�E� �the unfolded spectra�
from a straight line in the interval �a ,a+L�. In order to im-
prove the statistics and avoid the introduction of correlations
we choose successive intervals which overlap by L /2 �20�.
According to RMT, for GOE the expected value for large
values of L approaches

�3GOE
�

1

�2 �ln L − 0.0687� �11�

and for Poisson statistics it approaches L /15.
In the following we present �3 results for SW networks

for various p values, and corresponding DGOE. The nearest-
neighbor spacing distribution of SW networks, which probes
for short-range correlations of spectra, for the range of p

 pc can be modeled by Brody parameter as described in
�12�. After this values of p, which corresponds to the SW
transition as defined by Strogatz-Watts �1�, the short-range
correlations of spectra still follows GOE statistics, but the
long-range correlations probed via �3 statistics follows GOE
statistics only for certain range, and after that deviation from
GOE statistics is seen �13,14�. Which indicates possible
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FIG. 3. Same as Fig. 1, for p=0.010 and �=0.010.

0 1000 2000

Node

0

1000

2000

N
o
d
e

p=0.02

0 50 100 150
L

1.0

0.8

0.6

0.4

0.2

0.0

3(
L)

∆

(a) (b)

FIG. 4. Same as Fig. 1, for p=0.020 and �=0.010. Also Poisson
�dotted� and GOE �dashed� �3 are shown for the comparison.
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FIG. 5. Same as Fig. 1, for p=0.050 and �=0.015.
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FIG. 2. Same as Fig. 1, for p=0.005 and �=0.0070.
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breakdown of GOE theory for SW networks. And hence we
turn to the random matrix theory of DGOE. Note that for p
� pc the range for which �3 follows GOE statistics depends
upon the size and average degree of the network as well �14�.

In Figs. 1–6, the spectral rigidity �3 are presented for the
different values of p. The values of p varies from pc
=0.002, corresponding to the onset of SW behavior, to p
=1 which corresponds to a random graph. Each figure also
depicts the �3 for DGOE describing a transition Poisson-
GOE. The DGOE simulations are performed for matrices of
size N=2000. Note that for each value of p it is possible to
find a correspondent � with which the DGOE fits the �3 for
the SW model. The values of parameters p and � are listed in
the Table I. Using the criteria developed in �21� we find that
the critical value of � which separates the chaotic �random�
from regular regime is �c
0.15. Therefore before this value
of p the SW model is still in the regular regime, although the
distribution of nearest-neighbor spacing is totally compatible
with a GOE description. The multipeaks in the density of
eigenvalues for these values of p �14,22� also supports this
finding because it indicates that the network still has large
amount of regularity. In Figs. 3–6 the values for p are in-
creased and the �3 comes into the chaotic �random� regime.
As the value of p increases the spectra of SW becomes closer
to the GOE prediction. In other words, the local regularity is
gradually destroyed and the network becomes random. The
DGOE description, which we are using to model SW to ran-
dom network behavior, shows that for p
0.05, behavior of
�3 statistics can be modeled by a single value of �=0.015. It
suggests that under the framework of DGOE description, the
network with p�0.05 has as much symmetry as for a com-
plete random network �p�1�.

V. CONCLUSION AND DISCUSSION

According to the RMT the Poisson statistic describes sys-
tems with localized states on certain bases and uncorrelated
spectrum. On the other hand the GOE describes systems that
become ergodic in the thermodynamic limit and have corre-
lated spectra. For p=0 we have the ring graph which pos-
sesses N symmetry �rotational symmetry�. The numerical
calculations of the spectra show several degenerate eigenval-
ues �14�. There is no level repulsion and the spectra of ring
graph should follow the Poisson statistics. However, as the
value of the parameter p is increased gradually the rotational
symmetry is destroyed and coupling among the eigenstates
takes place. The spectra gradually suffer a transition from

Poisson statistics to GOE. For p
 pc the spacing distribution,
P�s�, agrees with GOE description, however �3 statistics
shows some part in the regular regime. This leads us to con-
clude that for p= pc the local regular structure is destroyed
and short-range correlation between eigenvalues is well de-
scribed by GOE. However some residual local regular struc-
ture is still present and the long-range correlation among the
eigenvalues measured by �3 is intermediate between Poisson
and GOE. This residual regular structure is merely connected
to the symmetric nature of the SW ring. This implies a sym-
metry constraint in the distribution which leads to a �3 which
is a linear combination of a regular, 15

L , term plus the GOE
term �23�. Note that the P�s� is less sensitive to the finer
details of the statistics than �3�L�. The behavior of the SW
level statistics �both P�s� and �3�L�� in this regime can be
completely modeled by DGOE which was constructed to
deal with such situations �constrained GOE�. Finally, for p

0.05 the GOE description of P�s� and �3�L� is recovered.

Before ending, we give a detailed assessment of the effect
of the size of the random matrices on the results of the sta-
tistical analysis. We have extended our study above to sizes
N=500, 1000, besides N=2000. For each case we have per-
formed the simulations and the subsequent DGOE analysis.
Space limitation does not allow us to present our results in
the form of figures but we have collected the relevant infor-
mation in the table alluded to above, Table I.

The first column indicates the value of SW rewiring prob-
ability p which is allowed to vary from very small, 0.002 to

TABLE I. Results of the DGOE analysis of SW networks using
different sizes of the random matrices. First column indicates the
value of rewiring probability p, second column shows size, the third
column is the DGOE transition parameter, while the fourth column
is the modified transition parameter �=N�2. See text for details.

p N � �

0.002 500 0.0060 0.0180

1000 0.0034 0.0116

2000 0.0065 0.0845

0.005 500 0.0090 0.0405

1000 0.0050 0.0250

2000 0.0070 0.0980

0.010 500 0.0110 0.0605

1000 0.0065 0.0422

2000 0.0100 0.2000

0.020 500 0.0140 0.0980

1000 0.0085 0.0722

2000 0.0100 0.2000

0.050 500 0.0220 0.070

1000 0.0120 0.144

2000 0.0150 0.450

0.200 500 1.0 500

1000

2000 0.0150 0.45

1.000 500 1.0 500

1000 1.0 1000

2000 1.0 2000
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FIG. 6. Same as Fig. 1, for p=0.20 and �=0.015.
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the allowed maximum of 1.00. In the second column indi-
cates the size of matrices. The last two columns indicate the
deduced DGOE parameters � and � �see the discussion of
the DGOE in the section following Sec. I�. As a reminder,
the parameter �, which takes the values inside the interval
0–1, measures the degree of deviation of the statistics from a
pure GOE �or pure Poisson�. The results shown in Table I
clearly indicate that the SW network is a rigid GOE en-
semble, regardless to the size for large values of p. The size
does matter, however, for small values of p, where one sees
a clear dependence of � on the size of the matrices used in
the DGOE simulations.

In conclusion, we have performed a statistical analysis of
the SW networks within the DGOE. The analysis clearly
demonstrates the usefulness of the DGOE statistics in sup-
plying a solid basis of an RMT-based model to describe the
chaos-order transitions in such networks. In general terms we
conclude that there is a direct connection between p and �,
which points to a natural mapping of SW network onto the
DGOE. Finally, for p=1 when the system is totally random
the GOE description is recovered.

From the random matrix point of view small-world net-
works studied here provide a very interesting system where

depending upon the rewiring probability one can see that the
short-range and the long-range correlations of the same en-
semble of matrices belong to two different classes of random
matrix models. From network point of view the analysis tells
that on the one hand a small amount of random rewiring is
enough to introduce short-range correlations among eigen-
values suggesting spreading of randomness in the whole net-
work, on the other hand DGOE statistics for long-range cor-
relations suggests the nature of symmetry in network. The
future directions of this study is to understand the interplay
of dynamical response �24� which is based on the spectra of
corresponding adjacency matrix and the symmetries hidden
in the network under DGOE framework. So far we have only
concentrated on the small-world model network, providing a
basis to the DGOE description of networks, future investiga-
tions would involve studies of real-world networks �25�.
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